

Recall: The Pythagorean theorem (see p.68 to review)

In a <u>right-triangle</u>, $a^2 + b^2 = c^2$, where

- c is the hypotenuse
- a, b are the other two sides

Length of a Line Segment

Oct 3/2011

A <u>line segment</u> is a straight line between two points. The length of a line segment can be determined from the coordinates of the two points:

- 1. Connect the points with a line segment.
- 2. Construct a right-triangle, where the line segment is the hypotenuse.
- 3. Use the <u>Pythagorean theorem</u> to find the length of the line segment (hypotenuse).

To derive a formula, consider two general points, Point #1 is
$$P_1(x_1, y_1)$$
 Point #2 is $P_2(x_2, y_2)$

$$P_2(x_2, y_2)$$

$$P_2(x_2, y_2)$$

$$P_1(x_1, y_1) \qquad \Delta x = x_2 - x_1$$

$$C^2 = \Delta x^2 + \Delta y^2$$

$$C^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Ex.2 What is the distance between the points G(-3,1) and H(4,5)? Give an exact and approximate answer rounded to the nearest tenth.

To determine the distance between a point and a straight line, draw the <u>perpendicular</u> line through the point.

Ex.3 Calculate the distance between the point G(5,-2) and the line y = 3x + 1. Give an <u>exact and approximate</u> answer rounded to the nearest tenth.

Assigned Work:

p.86-87 # 1ac, 4cd, 6, 7(draw), 12ab, 15

6. (x_1, y_2) horizontal lines y-coordinate does not charge (f) (-10,-2) to (b,-2) $-10 \frac{16}{16}$ x_2-x_1 = (b-(-10)) $= (x_2-x_1)^2$ $d = (x_2-x_1)^2$ $d = x_2-x_1$ (x_1, y_2) x-coordinate x-coordinate (-6,8) to (-6,-9) y=0 y=0 (-6,8) to (-6,-9) y=0 y=

```
12(A) y = 4x - 2 (-3,3)

① nead \bot slope

M_{\perp} = -\frac{1}{4}
② Sub the point (-3,3) into

y = M_{\perp}x + b to find equation

y = -\frac{1}{4}x + b

y = -\frac{1}{4}x + c
② Solve system a equations

y = 4x - 2 (y = -\frac{1}{4}x + \frac{1}{4} (y = -\frac{1}{4}x + \frac{1}{4}x + \frac{1}{4} (y = -\frac{1}{4}x + \frac{1}{4}x + \frac{1}{
```

 d_{1} d_{2} d_{3} d_{4} d_{3} d_{4} d_{4} d_{5}