
Quadratic Relations in Factored Form

Key Concepts:

- factored form of quadratic relation
- direction of opening from 'a'
- solving for zeroes
- using symmetry to find:
 - x-coordinate of vertex
 - axis of symmetry
- using substitution to find:
 - y-coordinate of vertex
 - y-intercept

Apr 10-6:32 PM

Is y = 2(x+1)(x-5) a quadratic relation? Examine 1st and 2nd differences:

Oct 19-8:29 PM

Quadratic Relations in Factored Form

00/2011

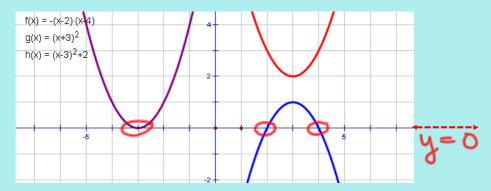
The equation of a quadratic relation may be written in several forms:

- 1. standard form: $y = ax^2 + bx + c$
- 2. factored form: y = a(x s)(x t)
- 3. vertex form: $y = a(x h)^2 + k$

The factored form, y = a(x - s)(x - t), is most useful for finding the <u>zeroes</u>, which are x = s and x = t.

Consider the following...

Give two numbers that have a product of zero:


What do you notice? (any value) $\times 0 = 0$

Solve:

(a)
$$3x = 0$$
 (b) $57y = 0$ (c) $3xy = 0$ $x = 0$ $x = 0$ $y = 0$

Mar 31-8:45 AM

Depending upon the location of the <u>vertex</u>, and whether the parabola opens up or down, it may have 0, 1, or 2 <u>distinct</u> (unique) zeroes.

Zeroes occur where the y-coordinate of the parabola is equal to zero.

To find the zeroes algebraically, we set y = 0 and solve for the x-values that make the equation true.

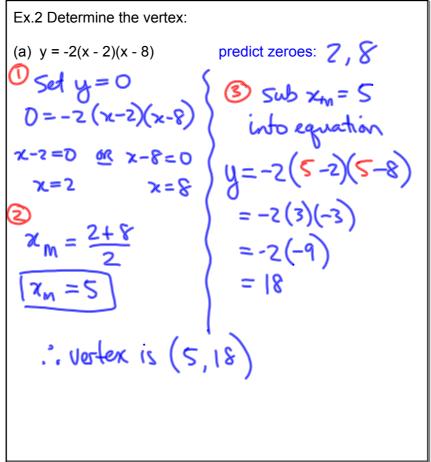
Ex.1 Determine the zero(es) of each

(a) y = x(x - 10) Recall:

Set y = 0 Zero multiplied by anything is zero. 0 = x(x - 10) x = 0 x = 0(b) y = -2(x - 5)(3x - 1) x = 0 $0 = 2(x - 2)^2$ Set y = 0 $0 = 2(x - 2)^2$ x = 0 x =

Apr 17-11:30 PM

The <u>zeroes</u> and <u>symmetry</u> can be used to find the <u>vertex</u> (h, k).


For the x-coordinate (h), find the midpoint of the zeroes:

$$MP = \frac{x_1 + x_2}{2} = \frac{s + t}{2}$$

For the y-coordinate (k), substitute the midpoint into the equation and solve for y:

$$y = a(x - s)(x - t)$$

$$y = a(MP - s)(MP - t)$$

Apr 18-12:03 AM

Ex.3 A parabola has zeroes at
$$-3$$
 and 2 , and a y-intercept of 18. Determine the equation.

$$y = \alpha(x-s)(x-t)$$

$$y = \alpha(x-(-3))(x-(2))$$

$$y = \alpha(x+3)(x-2)$$

$$y = \alpha(x+3)(x-2)$$

$$y = \alpha(x+3)(x-2)$$

$$y = \alpha(x+3)(x-2)$$

$$18 = \alpha(0+3)(0-2)$$

$$18 = \alpha(3)(-2)$$

$$18 = \alpha(-6)$$

$$-3 = \alpha$$

$$y = -3(x+3)(x-2)$$

Oct 19-9:26 PM

Assigned Work:

p. 155-157 # 2, 3, 4ace, 5, 6ace, 7, 10