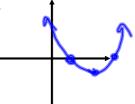
Predicting the Number of Roots of Quadratics Nov 29 2011

Recall: For a quadratic relation roots = zeroes = x-intercept = solutions

Given vertex form, look at:


- the location of the vertex (above/below x-axis?)
- the direction of opening (up/down?)

Ex.1
$$y = 3(x - 5)^2 - 1$$

The vertex lies **above(below?** the x - axis.

The parabola opens up down?

zero(es): _____

Apr 15-1:05 PM

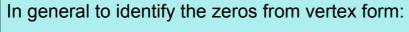
Ex.2
$$y = -2(x + 1)^2 + \bigcirc$$

The vertex lies on the x-axis

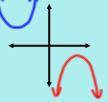
zero(es): ______

Ex.3
$$y = 3(x - 5)^2 + 6$$

 $V(5, 6)$.


above/below? the x-axis
opensup/down?

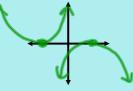
zero(es): ______


Ex.4 $y = -0.5(x + 3)^2 + 11$
 $V(-3, 1)$.

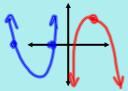
above/below? the x-axis

Apr 15-1:14 PM

There will be 0 zeroes if the vertex is _4_6_4_ the x-axis and the parabola opens _4_4_



opens up/down?


zero(es):

or if the vertex is below the x-axis and the parabola opens down

There will be 1 zero if the vertex is _ON_ _ the x-axis

There will be 2 zeroes if the vertex is <u>below</u> the x-axis and the parabola opens <u>w</u>

or if the vertex is done the x-axis and the parabola opens

What if the quadratic is in standard form?

- 1. Factor and find the number of roots directly.
- 2. Complete the square (vertex form) and deduce the number of roots by visualizing the graph.
- 3. Use the quadratic formula if:
 - it cannot be factored
 - the numbers are too difficult to work with

Ex.1 Use the quadratic formula to determine the zeroes.

(a)
$$-2x^{2} - 4x - 2 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = -2$$

$$b = -4$$

$$c = -2$$

$$= \frac{4 \pm \sqrt{0}}{16 - 16}$$

$$= \frac{4 \pm \sqrt{0}}{-4}$$

(b)
$$y = 3x^2 - 30x + 74$$
 $a = 3$
 $b = -30$
 $c = 74$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-36) \pm (-30)^2 - 4(3)(74)}{2(3)}$$

$$= \frac{30 \pm \sqrt{12}}{6}$$

$$= \frac{30 \pm \sqrt{12}}{6}$$

$$x = \frac{30 + \sqrt{12}}{6}$$

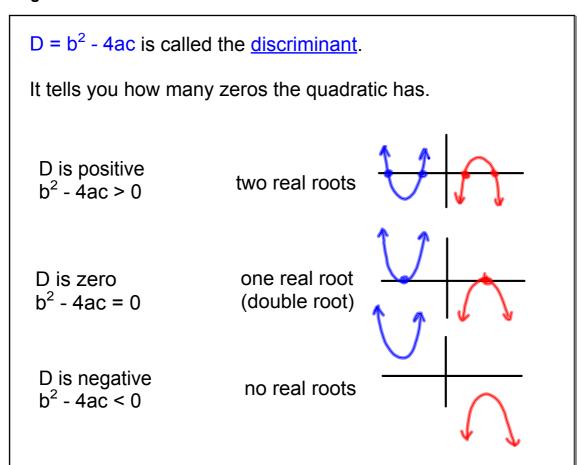
$$x = \frac{30 + \sqrt{12}}{6}$$

$$x = \frac{30 + \sqrt{12}}{6}$$

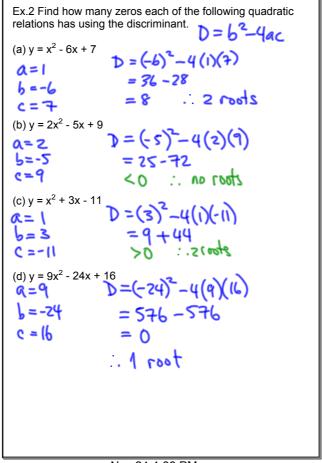
Apr 15-1:28 PM

(c)
$$y = 3x^2 - 30x + 81$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$


$$x = \frac{-(-3b) \pm \sqrt{(3b)^2 - 4(3)(81)}}{2(3)}$$

$$x = \frac{3b \pm \sqrt{-900 - 972}}{2(3)}$$


$$= \frac{30 \pm \sqrt{-72}}{6}$$

$$= \frac{30 \pm \sqrt{-72}}$$

Apr 15-1:28 PM

Nov 24-1:34 PM

p.350 # 2, 3, 4, 5, 7, 9, 10, 12

Apr 19-8:15 PM