With similar triangles, the ratios of corresponding sides are equal, and corresponding angles are equal.

$$\frac{AB}{JK} = \frac{BC}{KL} = \frac{AC}{JL}$$

$$\angle A = \angle J$$

$$\angle B = \angle K$$

$$\angle C = \angle L$$

Dec 8-9:57 PM

$$\frac{BC}{AC} = 0.75$$

 $\frac{YZ}{XZ} = 0.75$

Are these triangles similar?

If they are similar, what does that tell us?

Dec 7-9:08 PM

With similar triangles, we work with ratios of sides between the different triangles.

What happens when we calculate ratios for sides within each triangle?

For example:
$$\frac{BC}{AC} = \frac{3}{4} = 0.75$$
 $\frac{KL}{JL} = \frac{6}{8} = 0.75$

In right-triangles, the ratios of sides are related to the angles. When matching ratios are equal, the angles are equal.

Dec 7-9:08 PM

Ratios in Right-Triangles

Dec 9/2011

To be consistent when finding ratios for a right-triangle, the sides have to be identified with respect to the angle of interest (never the 90° angle).

Dec 7-9:58 PM

To remember the trigonometric ratios:

SohCahToa

$$\sin \theta = \frac{o}{h}$$
 $\cos \theta = \frac{a}{h}$ $\tan \theta = \frac{o}{a}$

Dec 8-10:24 PM

The study of the ratios of triangle sides dates back as far as 140 BCE, with the Greek mathematician Hipparchus.

There are 6 possible ratios for each triangle. The most important form the three <u>primary trigonometric</u> ratios.

The decimal value of each trigonometric ratio corresponds to a particular angle.

Handout: Trigonometric Table

Ex.1 Find all trig ratios for
$$\theta$$
 and α .

Express as a decimal.

Are the angles θ and α equal?

Sin $\theta = \frac{0}{h}$

Cos $\theta = \frac{a}{h}$
 $= \frac{3}{5}$
 $= 0.6$
 $= \frac{3}{5}$
 $= 0.8$
 $= 0.75$

Sin $d = \frac{0}{h}$

Cos $d = \frac{a}{h}$
 $= \frac{3}{5}$
 $= \frac{4}{5}$
 $= 0.8$
 $= \frac{3}{5}$
 $= \frac{4}{3}$
 $= \frac{3}{5}$
 $= \frac{3}{5}$

Dec 8-10:55 PM

Ex.2 Solve
$$\cos 70^\circ = \frac{x}{15}$$

You can also use a ratio to determine the angle.

Since
$$\sin 30^{\circ} = 0.5$$
, then $\sin^{-1}(0.5) = 30^{\circ}$

Find the sin-1 "sine inverse" button on the calculator

Ex.3 Solve using trig table or calculator

(a)
$$\sin \theta = 0.524$$

(a)
$$\sin \theta = 0.524$$
 (b) $\cos \theta = \frac{7}{8}$

May 11-3:01 PM

Ex.4 Solve for θ and α .

Assigned Work:

Dec 8-11:10 PM

Dec 12-10:30 AM

$$8(a) \cos 45^{\circ} = \frac{x}{6}$$

$$0.7071 = \frac{x}{6}$$

$$x = 6(0.7071)$$

$$x = 4.2426$$

$$x = 4.2426$$

Dec 12-10:37 AM

Dec 12-10:40 AM

Dec 12-10:45 AM

Dec 12-10:49 AM

MPM 2D (L39- Scale Factor (GSP)).gsp 02 Scale Factor - GSP.gsp