Recall: The simplest quadratic relation is $y = x^2$

On rearranging, it is possible to get answers in the form $x = \pm \sqrt{y}$

With actual values, we might see results such as

$$\sqrt{5}$$
 $3\sqrt{2}$ $\frac{\sqrt{3}}{2}$

It is often required to keep answers in this exact form.

Feb 6-3:52 PM

Multiplying & Dividing Radicals

In general,
$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$

and
$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$$
 where $b \neq 0$

Ex.1
(a)
$$\sqrt{27}$$
(b) $\sqrt{\frac{16}{9}}$
(a) $\sqrt{3}$ (9)
$$= \sqrt{3} \cdot 9$$

$$= \sqrt{27}$$

Feb 8-10:41 PM

Simplifying Radicals

A radical is in its simplest form when:

- the radicand has no perfect square factors (other than 1)

$$\sqrt{8} = \sqrt{4}\sqrt{2} = 2\sqrt{2}$$

- the radicand contains no fractions

$$\sqrt{\frac{1}{4}} = \frac{1}{2}$$

- no radical appears in the denominator

$$\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$$

Feb 8-11:09 PM

Homework:

Adding & Subtracting Radicals

To add or subtract radicals, they must have the same <u>radicand</u>. It is advisable to simplify radicals to ensure all like terms (same radicand) are revealed.

Ex.3 Simplify

(a)
$$4\sqrt{3} - 2\sqrt{5} + 6\sqrt{3} + 5\sqrt{5}$$
 $4x - 2y + 6x + 5y$
= $10\sqrt{3} + 3\sqrt{5}$ = $10x + 3y$

(b)
$$2\sqrt{12} - 5\sqrt{27} + 3\sqrt{48}$$

= $2\sqrt{4 \cdot 3} - 5\sqrt{9 \cdot 3} + 3\sqrt{16 \cdot 3}$
= $4\sqrt{3} - 15\sqrt{3} + 12\sqrt{3}$
= $\sqrt{3}$

Feb 8-10:41 PM

Binomial Multiplication of Radicals

Recall:
$$(a+b)(c+d) = ac + ad + bc + bd$$

Ex.4 Expand & Simplify

$$(3\sqrt{5}+2)(2\sqrt{5}-3)$$
= $(3\sqrt{5}+2)(2\sqrt{5}) + (3\sqrt{5})(-3) + (2)(2\sqrt{5}) + (2)(-3)$
= $6\sqrt{25} - 9\sqrt{5} + 4\sqrt{5} - 6$
= $30 - 9\sqrt{5} + 4\sqrt{5} - 6$
= $24 - 5\sqrt{5}$

Rationalizing the Denominator

A radical is not permitted in the denominator. If the denominator is a binomial, multiply by the <u>conjugate</u> of the denominator.

Given $a\sqrt{b} + c\sqrt{d}$, the conjugate would be $a\sqrt{b} - c\sqrt{d}$ Given $a\sqrt{b} - c\sqrt{d}$, the conjugate would be $a\sqrt{b} + c\sqrt{d}$

Ex.5 Find the conjugate of each radical

(a)
$$\sqrt{5} - \sqrt{2}$$

(b)
$$3\sqrt{5} + 2\sqrt{10}$$

Feb 8-11:24 PM

Ex.6 Rationalize the denominator

$$\frac{4\sqrt{3}-2\sqrt{2}}{\sqrt{3}-\sqrt{2}} \times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}} = \exp (a)$$

$$= (4/3)(3) + (4/3)(2) + (-2/2)(3) + (-2/2)(2)$$

$$= (4/3)(3) + (4/3)(2) + (-5/2)(3) + (-5/2)(2)$$

$$= 4/9 + 4/6 - 2/6 - 2/4$$

$$= 9/4 + 2/6 - 4$$

$$= 8/4 + 2/6$$

$$= 8/4 + 2/6$$

Feb 8-11:29 PM

Feb 1-7:30 PM

Feb 10-1:41 PM

$$P.139 #7$$
(j) $(2\sqrt{7}+\sqrt{5})$ $(3\sqrt{7}+2\sqrt{5})$

$$= \frac{6(7)+4\sqrt{35}+3\sqrt{35}+2(5)}{9(7)+6\sqrt{35}-6\sqrt{35}-4(5)}$$