Intersection of Quadratics & Lines

(more solving quadratic equations)

Recall from last class:

Consider $y = x^2 + 6x$, and solve for y = -8.

Feb 6-3:52 PM

Intersection of Quadratics & Lines

(more solving quadratic equations)

Recall from last class:

Consider $y = x^2 + 6x$, and solve for x = -2.

Intersection of Quadratics & Lines

(more solving quadratic equations)

Recall from last class:

Consider $y = x^2 + 6x$, and solve for y = x - 4.

Feb 6-3:52 PM

Intersection of Quadratics & Lines

(more solving quadratic equations)

A linear-quadratic system will have zero, one, or two solutions.

No Solution

One Solution (tangent line)

Two Solutions (secant line)

Recall: To <u>solve</u> an equation is to find the value(s) for the variables that satisfy the equation (i.e., make it true)

Given a quadratic relation, $y = Ax^2 + Bx + C$

and a linear relation, $y = mx + b_1$

the solution will be the point(s) where the parabola and straight line intersect.

Feb 12-6:48 PM

$$y = Ax^2 + Bx + C$$
 (1) $y = mx + b_1$ (2)

Solve the <u>system of equations</u> using the fact that y = y

$$y = y$$

$$Ax^{2} + Bx + C = mx + b_{1}$$

$$\vdots$$

$$ax^{2} + bx + c = 0$$

$$\Rightarrow \text{ solve for } \times$$

$$(\text{Zeroes})$$

Sub the x-values from the solution(s) into <u>either</u> original relation to find the corresponding y-values.

Feb 10-9:51 PM

Ex.2 Determine the equations of the lines that have a slope of 2 that intersect y = x(6-x)

- (a) once
- (b) twice
- (c) never

Assigned Work:

worksheet

Feb 10-10:23 PM

Feb 14-12:34 PM

