
ICS3x Methods in Java – Sample Code

Version 1: Print messages and pause after each, asking the user if they are ready to
continue

class MethodDemoV1
{
 public static void main (String[] args)
 {
 char ready = 'n';

 // placeholder for a much larger section of code
 System.out.println("Welcome to the program");

 do
 {
 System.out.print("Ready to continue? (Y/N) ");
 ready = In.getChar();
 } while (ready != 'y' && ready != 'Y');

 // placeholder for a much larger section of code
 System.out.println("The program is still running...");

 do
 {
 System.out.print("Ready to continue? (Y/N) ");
 ready = In.getChar();
 } while (ready != 'y' && ready != 'Y');

 // placeholder for a much larger section of code
 System.out.println("Over yet? Nope, still running!");

 do
 {
 System.out.print("Ready to continue? (Y/N) ");
 ready = In.getChar();
 } while (ready != 'y' && ready != 'Y');

 // placeholder for a much larger section of code
 System.out.println("Program terminated");
 }
}

This program does not do much (printing messages and waiting for the user to indicate they are
ready to continue). You might notice, however, that the code that waits for the user is the same in
several locations.

Repeated code provides a good opportunity to use methods. A single method can contain the
repeated code, and then we call the method whenever we want to run that code.

ICS3x Methods in Java – Sample Code

Version 2: Create a method called readyToContinue and move the repeated code there

In version 2 of the code, the repeated code has been moved into a method called
readyToContinue. Whenever we want to use the code in our program, we use the simple
command "readyToContinue();" instead.

class MethodDemoV2
{
 public static void readyToContinue()
 {
 do
 {
 System.out.print("Ready to continue? (Y/N) ");
 ready = In.getChar();
 } while (ready != 'y' && ready != 'Y');
 }

 public static void main (String[] args)
 {
 char ready = 'n';
 // placeholder for a much larger section of code
 System.out.println("Welcome to the program");

 readyToContinue();

 // placeholder for a much larger section of code
 System.out.println("The program is still running...");

 readyToContinue();

 // placeholder for a much larger section of code
 System.out.println("Over yet? Nope, still running!");

 readyToContinue();

 // placeholder for a much larger section of code
 System.out.println("Program terminated");
 }
}

Unfortunately, this program does not work. The problem is the variable ready, which was
declared in the main method, but is used in the readyToContinue method.

A variable must be declared inside the block of code where it is used. In this case, the block of
code is the readyToContinue method. We will fix this problem in version 3.

ICS3x Methods in Java – Sample Code

Version 3: Move the variable ready into the method readyToContinue

The variable ready has been removed from the main method and placed into the
readyToContinue method instead. This new version will compile and run correctly.

class MethodDemoV3
{
 public static void readyToContinue()
 {
 char ready = 'n';

 do
 {
 System.out.print("Ready to continue? (Y/N) ");
 ready = In.getChar();
 } while (ready != 'y' && ready != 'Y');
 }

 public static void main (String[] args)
 {
 // placeholder for a much larger section of code
 System.out.println("Welcome to the program");

 readyToContinue();

 // placeholder for a much larger section of code
 System.out.println("The program is still running...");

 readyToContinue();

 // placeholder for a much larger section of code
 System.out.println("Over yet? Nope, still running!");

 readyToContinue();

 // placeholder for a much larger section of code
 System.out.println("Program terminated");
 }
}

Another advantage of methods is the ability to change code more easily. If we decided to change
the way the user indicates they are ready to continue, we can make our changes in the method
readyToContinue. In version 1 of our program, we would have to make changes throughout the
program. Not only is this time consuming, but there is a greater chance of making a mistake as
well.

ICS3x Methods in Java – Sample Code

Version 4: Change the user response from a character (char) to a string (String)

class MethodDemoV4
{
 public static void readyToContinue()
 {
 String ready = "no";

 do
 {
 System.out.print("Ready to continue? (Y/N) ");
 ready = In.getString();
 } while (!ready.equals("yes") && !ready.equals("y") &&
 !ready.equals("YES") && !ready.equals("Y") &&
 !ready.equals("ya"));
 }

 public static void main (String[] args)
 {
 // placeholder for a much larger section of code
 System.out.println("Welcome to the program");

 readyToContinue();

 // placeholder for a much larger section of code
 System.out.println("The program is still running...");

 readyToContinue();

 // placeholder for a much larger section of code
 System.out.println("Over yet? Nope, still running!");

 readyToContinue();

 // placeholder for a much larger section of code
 System.out.println("Program terminated");
 }
}

