Solving Linear Trigonometric equations

To solve a trigonometric equation means to find the angle value(s) that satisfy the given equation.
recall: solving linear equations

Solve for x :
$2 x+3=4 x-5$

Solving Linear Trigonometric equations may $9 / 2012$

To solve a trigonometric equation means to find the angle value(s) that satisfy the given equation.

Steps:

- the equation should involve only one trigonometric ratio
- isolate the trigonometric ratio
- solve for the related acute angle (using positive ratio)
- use the actual sign of the ratio to determine the quadrant(s) for your answer [CAST]
- determine the angles, within your chosen quadrants, using the related acute angle

Ex: 1) Solve each equation for $0^{\circ}<\theta \leq 360^{\circ}$
a) $\sin \theta=\frac{\sqrt{2}}{2}$
(3)

$$
\begin{aligned}
R A A & =\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right) \\
& =45^{\circ}
\end{aligned}
$$

(4) $\frac{(5) \oplus}{T(C} \quad Q_{1}$ or Q2
(5)

$$
\begin{aligned}
& Q 1: \theta=45^{\circ} \\
& Q 2: \theta=135^{\circ} \quad\left(180^{\circ}-45^{\circ}\right)
\end{aligned}
$$

$$
\sin 45^{\circ}=\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}
$$

$$
=\frac{\sqrt{2}}{2}
$$

Title : May 4-12:56 PM (Page 3 of 11)
b) $\cos \theta=\frac{-1}{2}$ using positive ratio
(3)

$$
\begin{aligned}
R A A & =\cos ^{-1}\left(\frac{1}{2}\right) \\
& =60^{\circ}
\end{aligned}
$$

(4)

$$
Q 2+Q 3
$$

(5)

$$
\begin{aligned}
Q 2: \theta=120^{\circ} & Q 3: \\
& \theta=240^{\circ}
\end{aligned}
$$

c)

$$
\begin{aligned}
\sin \theta+\sqrt{3} & =-\sin \theta \\
+\sin \theta-\sqrt{3} & +\sin \theta-\sqrt{3} \\
\frac{2 \sin \theta}{2} & =-\frac{\sqrt{3}}{2} \\
\sin \theta & =-\frac{\sqrt{3}}{2}
\end{aligned}
$$

(3)

$$
\begin{aligned}
\text { RAA } & =\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& =60^{\circ}
\end{aligned}
$$

(5)

$$
\begin{aligned}
& \text { Q3: } \theta=240^{\circ} \\
& \text { Q4: } \theta=300^{\circ}
\end{aligned}
$$

(4) $\frac{S / A}{(T) Q} Q^{3} \times Q 4$
d) $5 \tan \theta=2 \tan \theta+7$
(2) $3 \tan \theta=7$

$$
\tan \theta=\frac{7}{3}
$$

(3) $R A A=\tan ^{-1}\left(\frac{7}{3}\right)$
(5) $Q 1: \theta \div 66.8^{\circ}$
(4) $\doteq 66.8^{\circ}$

Q3: $\theta=180^{\circ}+66.8^{\circ}$
$\frac{5}{\square T} \quad Q 1 \times Q 3$

$$
\begin{aligned}
\theta & =180^{\circ}+66.8^{\circ} \\
& =246.8^{\circ}
\end{aligned}
$$

f) Critionorf3nas

$$
\begin{array}{r}
1 / \sin \left(\frac{1}{2} \theta\right)+3=-5 \\
\text { let } x=\frac{1}{2} \theta \\
11 \sin x+3=-5 \\
11 \sin x=-8 \\
\sin x=-\frac{8}{11}
\end{array}
$$

(3) $\begin{aligned} B A A & =\sin ^{-1}\left(\frac{8}{11}\right) \\ & =467^{\circ}\end{aligned}$

$$
\doteq 46.7^{\circ}
$$

(4) $\frac{S}{(T)}(A) Q 3+Q 4$
(5)

$$
\begin{aligned}
x & =180^{\circ}+46.7^{\circ} & x & \doteq 360^{\circ}-46.7^{\circ} \\
& \doteq 226.0^{\circ} & & \doteq 313.3^{\circ} \\
\frac{1}{2} \theta & =226.7^{\circ} & \frac{1}{2} \theta & \doteq 313.3^{\circ} \\
\theta & \doteq 453.4^{\circ} & \theta & =626.6^{\circ}
\end{aligned}
$$

but $0^{\circ}<\theta \leqslant 360^{\circ}$
\therefore no solution

Assigned Work:

$14(a) \quad \sin 2 x=1$
lat $2 x=\theta$
$\sin \theta=1$

$$
\text { RAF }=\sin ^{-1}(1)
$$

$$
=90^{\circ}
$$

$$
\sin \theta=\frac{y}{r}
$$

$$
\begin{array}{rlrl}
\theta & =90^{\circ} \rightarrow \theta & =90^{\circ}+360^{\circ} \\
2 x & =90^{\circ} & & =450^{\circ} \\
x & =45^{\circ} & 2 x & =450^{\circ} \\
x & =225^{\circ}
\end{array}
$$

2(a) $\quad \sin x+1=0$

$$
\sin x=-1
$$

$$
R_{A A}=\sin ^{-1}(1)
$$

$$
=90^{\circ}
$$

$$
x=270^{\circ}
$$

