
Decisions in Java –Boolean Values & Expressions

Boolean Values & Variables

In order to make decisions, Java uses the concept of true and false, which are boolean values.

Just as is the case with other primitive data types, we can create boolean variables to hold these

values.

boolean readyToProgram = true;

Boolean Expressions

A boolean expression is similar to a mathematical expression, except that the result is true or false,

rather than a numeric value. To create a boolean expression, we use the relational operators to

compare the values of various data types, such as integers, floats, characters, or strings, using a

relational expression.

Relational Operator Meaning Example Result

== is equal to 5 == 5 TRUE

!= is not equal to 5 != 5 FALSE

< is less than 3 < 7 TRUE

<= is less than or equal to 4 <= 4 TRUE

> is greater than 3 > 7 FALSE

>= is greater than or equal to 7 >= 3 TRUE

The following rules apply to the use of relational operators with different data types:

 1. Values of any of the primitive numeric data types (e.g., int, float, and all their variations) can be

used with any of the relational operators.

 2. Boolean values can only be tested as “equal to” or “not equal to”.

 3. Values of type char are ordered according to the Unicode encoding system. A character the

occurs earlier in the system is “less than” a character that occurs later in the system. You can

research full details of the Unicode system online.

 a) For alphabetic characters, this means that 'a' is less than 'z', and 'A' is less than 'Z', as

expected.

 b) In the Unicode system, all uppercase letters occur earlier than all lowercase letters. Thus

we get the relational ordering of:

'A' < 'B' < 'C' < ... < 'Z' < 'a' < 'b' < 'c' < ... <'z'

 c) Representing numbers as characters, such as when you type on a keyboard, keeps the

same ordering, so that '0' < '1' < '2' < ... < '9'.

Page 1 of 3

Decisions in Java –Boolean Values & Expressions

The following program demonstrates the creation and output of boolean variables.

Boolean Operators

It is possible to combine two or more boolean values, variables, or expressions into a more

complicated boolean expression using the boolean operators. Unlike the relational operators, the

boolean operators can only work on boolean values. You can use a relational operator to compare

any data type, which forms a boolean expression. Multiple boolean expressions can be combined

using boolean operators.

The boolean operators are summarized in the following table.

boolean value not p p AND q p OR q

p q !p p && q p || q

TRUE TRUE FALSE TRUE TRUE

TRUE FALSE FALSE FALSE TRUE

FALSE TRUE TRUE FALSE TRUE

FALSE FALSE TRUE FALSE FALSE

1. !p (not p) has the true/false value opposite to p.

2. p && q (p AND q) is true if and only if both p and q are both true.

3. p || q (p OR q) is true if p is true, q is true, or both p and q are true.

Page 2 of 3

class BooleanOutput
{

public static void main (String [] args)
{

boolean x = false;
boolean y = true;
System.out.print("x: ");
System.out.println(x);
System.out.print("y: ");
System.out.println(y);

}
}

Decisions in Java –Boolean Values & Expressions

Exercises

1. State, with reasons, what this program will print (figure out your answer before trying to run the
program!)

class BooleanVariables
{

public static void main (String [] args)
{

boolean perhaps, maybe;
perhaps = 4 < 5;
maybe = (-17 % 4) == 1;
System.out.println("perhaps: " + perhaps);
System.out.println("maybe: " + maybe);

}
}

2. Evaluate each expression, assuming the following declarations have been made.

boolean p = true, q = false, r = false, s = true;

a) !p
b) p || q
c) p && r
d) !(q && s)
e) !q && s

f) s && !q
g) p || !s
h) !p && !q
i) s || (!q && r)
j) p == (q || r)

3. Rewrite the following program (from a previous exercise) using boolean expressions to combine
the multiple IF statements into a single statement.

if (age < minAge)
{

if (income > minIncome)
{

System.out.println("Accepted");
}
else
{
System.out.println("Rejected");
}

}

4. Using boolean expressions, write a fragment of code that prints the smallest value contained in
the variables a, b, and c. Create a program to test your code fragment. See the solution from the
previous exercise (different note) if you need help with getting started.

5. A typical program will ask the user, "Are you sure you wish to continue?", and then prompt them
for a 'y' or 'n' (char) response. Write a program that asks the user a suitable question and
prompts them for a single character response, 'y' or 'n'. Use boolean logic to have your program
handle uppercase at the same time ('Y' or 'N'). Also have your program handle an invalid
response (anything other than 'y' or 'n').

Page 3 of 3

