
Repetition using Java – do Statements

The following is a practical example to illustrate the while statement.

while (there are lumps in the gravy)
give the gravy a stir

end while

First we check for lumps. If there are any lumps, start stirring. The idea is to keep checking for lumps,

and if there are still lumps, stir the gravy. If the lumps are gone, the loop ends.

In the kitchen, you might not be able to detect the lumps just by looking. In that case, you might start

by giving the gravy a stir, and then checking if any lumps are still present. Our example pseudocode

would have to change slightly to accomplish this new behaviour.

start
give the gravy a stir

while (there are lumps in the gravy)

The Do Loop – Decision at the End

The do statement is similar to the while statement. Both check a boolean expression, and if the

expression is true, the loop continues. Once the statement becomes false, the loop exits.

while (<boolean expression>)
{

<statements>
}

do
{

<statements>
} while (<boolean expression>);

Note the semicolon (;) at the end of the do statement.

We can also represent a do loop using a flowchart, as we did with while statements.

Since the do statement executes the statement(s) in its

body before evaluating the boolean expression, the loop

will always be entered at least once.

This makes the do statement particularly useful in

situations where we know we want to perform the loop at

least once.

Otherwise, it is generally interchangeable with the while

statement.

20. Mar. 2012 Page 1 of 5

Evaluate
<expression>

Execute
<statement>

true

false

Repetition using Java – do Statements

Example 1 – Ask the user for integer values, and then outputs the square of the value. Continues to

do this until the user enters zero, which causes the loop to exit. Compare the code containing while

and do statements which yield similar, but not identical, results.

while statement – The user is asked for a number before entering the loop to print out a value.
If the number is zero, nothing will be printed.

System.out.print("Give an integer (zero to stop): ");
int value = In.getInt();
while (value != 0)
{
 System.out.println(value + " " + value*value);
 System.out.print("Next integer (zero to stop): ");
 value = In.getInt();
}

do statement – The user is asked for a value inside the loop, which means something will be
printed no matter what they enter (even if they enter a zero right away). Also notice that the
order of the statements inside the loop had to be rearranged.

do
{
 System.out.print("Give an integer (zero to stop): ");
 value = In.getInt();
 System.out.println(value + " " + value*value);
} while (value != 0);

Example 2 – This fragment forces a user to supply a value that lies in the range from one to ten. If the

user provides a value outside this range, they are asked to enter their value again (and again) until

they get it right. That is why the boolean expression is the negative of what we want the user to enter.

The loop keeps repeating for invalid responses.

int value;
do
{

System.out.println("Give an integer from one to ten");
value = In.getInt();

} while (value < 1 || value > 10);

// we want a value that is between 1 and 10
// keep looping until the user provides a valid reponse
// invalid response: value < 1, so keep looping
// invalid response: value > 10, so keep looping

20. Mar. 2012 Page 2 of 5

Repetition using Java – do Statements

Exercises

1. For what kind of looping situation is a do usually preferable to a while?

2. What would be output by the program fragment shown below is it were given the following input

sequence?

input code fragment

-5
 0
25

int howMany = 0;
System.out.println("How many items to add?");
do
{

howMany = In.getInt();
if (howMany <= 0)
{

System.out.println("Give a positive value.");
}

} while (howMany <= 0);

3. Write a fragment that forces a user to supply either 'y' or 'n' in response to the question,

"Continue? Respond with y or n".

4. Write a program fragment that asks the user to supply a letter of the alphabet, rejecting responses

until the user gives either an upper or a lower case letter of the alphabet (i.e., rejecting numbers,

punctuation, or spaces).

5. Write a program that first forces the user to supply a positive integer and then prints the number

and the sum of its digits.

6. Write a program that asks the user for the secret password until they provide it.

20. Mar. 2012 Page 3 of 5

Repetition using Java – do Statements

Solutions

1. When you must enter the loop at least once.

2. Give a positive value
Give a positive value

3. char answer;
do
{
 System.out.println("Continue? Respond with y or n");
 answer = In.getChar();
}
while (answer != 'y' && answer != 'n');

4. class DoLoopExercise4
{
 public static void main(String [] args)
 {
 char letter;
 do
 {
 System.out.println("Give a letter of the alphabet");
 letter = In.getChar();
 }
 while (! (('A'<= letter && letter <= 'Z') ||
 ('a' <= letter && letter <= 'z')));
 // letters are between 'A' and 'Z', or 'a' and 'z'
 // so we stay in the loop when we DON'T have a letter
 }
}

5. class DoLoopExercise5
{
 public static void main(String [] args)
 {
 int number, lowDigit;
 int sum = 0;
 System.out.println("Give a POSITIVE integer");
 number = In.getInt();
 System.out.print(number + " has a sum of digits = ");
 do
 {
 // divide any number by 10, and the remainder is the
 // number in the ones column
 lowDigit = number % 10;
 sum += lowDigit;
 // integer division by 10 will move the decimal place
 // left by one, and drop the decimal value
 number = number / 10;
 }
 while (number > 0);
 System.out.println(sum);
 }
}

20. Mar. 2012 Page 4 of 5

Repetition using Java – do Statements

6. class DoLoopExercise6
{
 public static void main(String [] args)
 {
 String userPassword = "";
 String actualPassword = "please";
 do
 {
 System.out.print("What is the password? ");
 userPassword = In.getString();
 }
 while (!userPassword.equals(actualPassword));
 System.out.println("Password accepted");
 }
}

20. Mar. 2012 Page 5 of 5

