Math in Java

Random Numbers

The Importance of Randomness

- modern computers will often attempt to simulate real-life
- the real world has many phenomena that are random, or have an element of chance
- for example,
- gambling (dice, cards, etc.)
- weather (movement \& interaction of air particles)
- human responses (as simulated in games)

Generating a Random Number Math.random()

Java provides a special method called Math.random() for producing random numbers.

This method produces a very specific and limited output. It is then up to the programmer to turn that into something more appropriate to their application.

The result is between 0.000000 and 0.999999
System.out.println (Math.random()) ;

Example: Random Numbers simulate a six-sided die

A single die has six sides. Assuming it is a fair die, the odds of getting any roll (from 1 to 6) will be the same.

How can we simulate this result using a random number generator from 0.000000 to 0.999999 ?

Example: Random Numbers simulate a six-sided die

How can we simulate this result using a random number generator from 0.000000 to 0.999999 ?

Step 1: Multiply by the number of possible outcomes
A six-sided die has 6 possible outcomes $(1,2,3,4,5,6)$.

Low Value
 High Value

Before: 0.000000
0.999999

After:
0.000000
5.999999

Example: Random Numbers simulate a six-sided die

How can we simulate this result using a random number generator from 0.000000 to 0.999999 ?

Step 2: Change the result to an integer
So far we have decimal values, but a die is integers. We convert to an integer by chopping off the decimal part (this is NOT rounding... the decimal part is just cut away).

Low Value
Before: 0.000000
High Value
5.999999

After:
0
5

Example: Random Numbers simulate a six-sided die

How can we simulate this result using a random number generator from 0.000000 to 0.999999 ?

Step 3: Add or subtract the starting value
We now have 6 values ($0,1,2,3,4,5$). For our example, we want these values to start at 1, not zero. Add 1 and we should have the correct range of values.

Low Value
Before:
0
High Value
5
After:
1
6

Example: Random Numbers simulate a six-sided die

The code to produce this result would be:
int dieRoll $=$ (int) (6 * Math.random()) + 1;
variable to store random value
convert to integer value

generate random value
add offset to starting value

Example: Random Numbers determine the possible results

Consider the following code:

int value $=$ (int) (10 * Math.random()) + 5;
variable to store random value
convert to integer value

generate random value

add offset to starting value
number of possible outcomes

Example: Random Numbers determine the possible results

Consider the following code:

int value $=$ (int) (11 * Math.random()) - 5;
variable to store random value
convert to integer value

generate random value
add offset to starting value
number of possible outcomes

