

Methods in Java

Review

What is a Method?

A method is a program within a program, which is
also called a sub-program. You may also hear
terms such as functions and procedures, which
are the same as methods in Java.

We have already made use of the most important
method of all, the main method. The main method
starts all of our programs.

There are also utility methods, such as those for
input, output, and specialized math operations.

Why Use a Method?

1. Organization: Methods allow you to group
commands into a task with a meaningful name
that summarizes its purpose.

2. Efficiency: Some tasks are repeated many
times within a single program. By using a
method, these tasks can often be performed with
a single line, which calls the method.

3. Maintenance: It is easier to change a single
method than change code in multiple locations
throughout your program.

Java Structure with Methods
(methods can be declared before main)

class JavaProgram
{

public static void doSomething()
{

// useful instructions here!
}

public static void main(String[] args)
{

doSomething(); // call method
}

}

Java Structure with Methods
(methods can be declared after main)

class JavaProgram
{

public static void main(String[] args)
{

doSomething(); // call method
}

 public static void doSomething()
{

// useful instructions here!
}

}

Multiple Methods in Java
class JavaProgram
{

public static void doSomething1()
{

// method # 1
}

 public static void doSomething2()
{

// method # 2
}

public static void main(String[] args)
{

doSomething1(); // call method 1
doSomething2(); // call method 2

}
}

Methods Can Call Other Methods

class JavaProgram
{

public static void doSomething1()
{

doSomething2(); // call method 2
}

 public static void doSomething2()
{

// method # 2
}

public static void main(String[] args)
{

doSomething1(); // call method 1
}

}

Remember to
always start with
main method!

Parameters – Additional Information

When calling, or invoking, a method, we often
wish to provide some additional information.

This allows our methods to be more general,
which means they can be applied to more
situations.

Few Options Without Parameters

public static void print10X()
{

for (int i = 1; i <= 10; i++)
{

System.out.print("X");
}

}

public static void print10Y()
{

for (int i = 1; i <= 10; i++)
{

System.out.print("Y");
}

}

More Options With Parameters

public static void print10Chars(char ch)
{

for (int i = 1; i <= 10; i++)
{

System.out.print(ch);
}

}

More Options With Parameters

public static void printNChars(int n, char ch)
{

for (int i = 1; i <= n; i++)
{

System.out.print(ch);
}

}

Parameter Data Protection
Many parameters are one of the basic data types
(e.g., int, char, boolean, double).

When passing such data, it is protected by making
a copy for the methods. In other words, the
method does not get the original – it gets a
duplicate.

If the method changes the data, it does not affect
the original data.

Warning: Does not apply to more complex data
types, such as arrays and Strings.

Parameter Data Protection

public static void main (String [] args)
{

int x = 5;
doSomething(x);
System.out.println(x);

}

public static void doSomething(int a)
{

a = a + 1;
System.out.println(a);

}

Parameter Data Protection

public static void main (String [] args)
{

int x = 5;
doSomething(x);
System.out.println(x);

}

public static void doSomething(int a)
{

a = a + 1;
System.out.println(a);

}

a does not
exist here

x does not
exist here

Output:
6
5

Java Structure with Methods
the keyword: void

public static void doSomething()
{

// useful instructions here!
 System.out.println("I am useful!");

}

The keyword "void" has a specific meaning for
methods in Java. It means they don't return any
kind of value. The simply perform a task, and
then they are complete.

Return Values with Methods
(returning a variable)

class ReturnDemo
{
 public static int daysInWeek()
 {
 int x = 7;
 return x; // send value back to main
 }

 public static void main(String[] args)
 {
 int days;
 days = daysInWeek(); // call method
 System.out.println(days + "days");
 }
}

Return Values with Methods
(using method as a value directly)

class ReturnDemo
{
 public static int daysInWeek()
 {
 int x = 7;
 return x; // send value back to main
 }

 public static void main(String[] args)
 {
 // call method from within println()
 System.out.println(daysInWeek() + "days");
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

