

Subprograms

Functions

What is a Subprogram?

Most useful programs are larger than those we
have considered so far. Unfortunately, as
programs become larger, they also become more
difficult to manage.

To address this issue, programmers break large
programs into modules called subprograms.

This is also a useful way to implement the “divide
and conquer” style of programming, by breaking
large problems into smaller ones.

Functions
A function is a subprogram that returns a value of
a particular data type (e.g., integer, real, string,
boolean).

Turing provides many functions as a built-in part
of the language.

For example, the square root function:

var answer : real

answer := sqrt(4)
% answer is now equal to 2

Example: Square Root Function

var answer : real

answer := sqrt(4)
% answer is now equal to 2

In general, we refer to this function as sqrt(x),
where x is any real number. Since the square
root of a real number is also real, the square root
function returns a real value.

Look up this function in the Turing help <F10> and
see how this information is presented.

sqrt square root function

Syntax
sqrt (r : real) : real

Description The sqrt function is used to find the square root of a
number. For example, sqrt (4) is 2.

Example This program prints out the square roots of 1, 2, 3,
… up to 100.
 for i : 1 .. 100
 put "Square root of ", i, " is ", sqrt (i)
 end for

Details It is illegal to try to take the square root of a negative
number. The result of sqrt is always positive or zero.
The opposite of a square root is the square. For
example, the square of x is written is x**2.

See also See also predefined unit Math.

Other Examples of Functions

Function Description Returns

round() rounds a real value integer

length() determines the length of a string integer

sqrt()
calculates the square root of a real
number real

intstr() converts an integer value to a
string

string

Creating a Function
A function must be declared before it is used,
similar to a variable. Thus the code for the
function(s) should be placed at the top of your
program.

For example:

function circumference(radius : real) : real
% returns circumference of a circle
result 2 * 3.14 * radius

end circumference

% output C for a circle with radius 10
put circumference(10)

Exercise: Function “circleArea”
Starting with the circumference code, add a
second function to calculate the area of the circle.
Ask the user for the radius and output the
circumference and area for that circle.

Start with the circumference code:

function circumference(radius : real) : real
% returns circumference of a circle
result (2 * 3.14 * radius)

end circumference

% output C for a circle with radius 10
put circumference(10)

Exercise: Function “circleArea”
function circumference(radius : real) : real

% returns circumference of a circle
result 2 * 3.14 * radius

end circumference

function circleArea(radius : real) : real
% returns area of a circle = pi * r-squared
result 3.14 * radius * radius

end circleArea

var radius : real

% output C and A for a given radius
put “Enter the radius of your circle: “..
get r
put “C = “, circumference(radius)
put “A = “, circleArea(radius)

Functions – Input & Output

The function is like a machine that takes your
input and produces some sort of output.

For example, there are “change machines” that
will allow you to input a $5, 10, or 20 bill. In
return, it will output change (usually $2, 1, or 0.25
coins).

Input/Output Data Types

The input to a “function machine” can involve
different types of input or output.

A change machine accepts currency (bills). The
output is also currency (coins).

A pop machine accepts currency (coins), but also
requires the user to press some buttons (strings?)
to decide on their purchase. The output is yet
another type (beverage).

Input/Output Data Types

When programming, our data types (so far) are
integer, real, string, and boolean.

A function can use any combination of these as
input. The input can be one or more parameters,
and they can be the same or different data types.

For output, the function will return a single value of
one data type. It can be the same or different
than any of the input data types.

Declaring a Function – Data Types
By declaring a function, we specify both the input
and output data types:

function something (x : type1, y : type2) : type3

In this case, the input x is data type #1 and the
input y is data type #2. They are just like var
statements, without the “var”.

The function itself is data type #3. Notice this type
is declared outside the bracket. This is the output
data type.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

