

Feb 2-6:19 PM
Factoring Quadratic Relations
A. Common Factors

* always look for common factors first!

Look for the greatest common factor of the coefficients and the GCF of the variables.

Ex. 1 Factor: $8 x^{3}-6 x^{2} y^{2}+4 x^{2} y$
$8 x^{3}=x \cdot 2 \cdot 2 \cdot x \cdot x \cdot x$
$6 x^{2} y^{2}=x \cdot 3 \cdot x \cdot x \cdot y \cdot y$
$4 x^{2} y=x \cdot 2 \cdot x \cdot x \cdot y$
GCF $=2 \cdot x \cdot x$
$=2 x^{2}$

$$
\begin{aligned}
\frac{x^{3}}{x^{2}} & =\frac{x \cdot y \cdot x}{x \cdot x} \\
& =x
\end{aligned}
$$

$8 x^{3}-6 x^{2} y^{2}+4 x^{2} y$
$=2 x^{2}\left(\frac{8 x^{3}}{2 x^{2}}-\frac{6 x^{2} y^{2}}{2 x^{2}}+\frac{4 x^{2} y}{2 x^{2}}\right)$
$=2 x^{2}\left(4 x-3 y^{2}+2 y\right)$
Mar 26-8:24 AM

B. Common Factors by Grouping

Some polynomials do not have common factors in all terms. They can sometimes be factored by grouping terms with common factors.

Ex. 2 Factor: $\underbrace{a c+b c}+\underbrace{a d+b d}$
c common d common
$=c \underbrace{(a+b)}_{e}+d \underbrace{(a+b)}_{e}$
$=c e \quad t d e$
$=e(c+d)$
$=(a+b)(c+d)$
C. Factoring Trinomial $\left(a x^{2}+b x+c\right)$

What is the relationship between the coefficients of each term in the expression? Use this information to decompose the middle term into two pieces, then factor by grouping.
must be the same!

$$
=(x-2)(x-3)
$$

Mar 26-8:24 AM

$$
\begin{aligned}
& \text { Ex. } 4 \text { Factor } 3 x^{2}+7 x+2 \\
&=3 x^{2}+6 x+x+2 \\
&=3 x(x+2)+1(x+2) \\
&=(x+2)(3 x+1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex. } 3 \text { Factor: }: x^{2}-5 x+6 \\
& \text { Sum : }-5 \\
& x^{2}-5 x+6 \\
& =x^{2}-2 x-3 x+6 \\
& =x(x-2)-3(x-2)
\end{aligned}
$$

D. Factoring Special Quadratics (by patterns)

$$
\begin{array}{ll}
\text { Perfect Squares: } & a^{2}+2 a b+b^{2}=(a+b)^{2} \\
& a^{2}-2 a b+b^{2}=(a-b)^{2}
\end{array}
$$

Difference of Squares: $\quad a^{2}-b^{2}=(a-b)(a+b)$
Ex. 5
S
P
$\frac{P}{I}-3600$
$I-60,60$
$\begin{array}{ll}S & 24 \\ P & 144\end{array}$
(a) $25 \mathrm{~d}^{2}-144$
(b) $16 x^{2}+24 x y+9 y^{2}$
$=(5 d)^{2}-(12)^{2}$
$=(4 x)^{2}+2(4 x)(3 y)+(3 y)^{2}$
$=(5 d-12)(5 d+12)$
$=(4 x+3 y)^{2}$
(c) $18 p^{2} q-60 p q+50 q$
(d) $98 a^{2}-32 b^{2}$

Feb 2-6:44 PM

Ex.5 (continued) (c) $18 \mathrm{p}^{2} \mathrm{q}-60 \mathrm{pq}+50 \mathrm{q}$	(d) $98 \mathrm{a}^{2}-32 \mathrm{~b}^{2}$
	Sep 4-8:49 PM

Homework:
p. 3 \# 4odd, 5odd, 6odd

4ace.. Sace... bace...

$$
\begin{aligned}
& 5(e) \quad w^{2}-81 \quad \quad 5 \begin{array}{c}
0 \\
p-81
\end{array} \\
& =\omega^{2}+0 \omega-81 \quad \text { I } 9,-9 \\
& =\omega^{2}+9 \omega-9 \omega-81 \\
& =w(w+9)-9(w+9) \\
& =(w+9)(w-9) \\
& a^{2}-b^{2}=(a-b)(a+b)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6(a) } 2 x^{2}+7 x+3 \\
& =2 x^{2}+x+6 x+3 \\
& =x(2 x+1)+3(2 x+1) \\
& =(2 x+1)(x+3)
\end{aligned}
$$

(e)

$$
\begin{aligned}
& 6 x^{2}+x-1 \\
& \begin{array}{lr}
S & 1 \\
P & -6
\end{array} \\
& =6 x^{2}+3 x-2 x-1 \quad \text { I } 3,-2 \\
& =3 x(2 x+1)-1(2 x+1) \\
& =(2 x+1)(3 x-1)
\end{aligned}
$$

Sep 6-9:12 AM

6(a) $9 a^{2}-16$

$$
\begin{aligned}
& =(3 a)^{2}-(4)^{2} \\
& =(3 a-4)(3 a+4)
\end{aligned}
$$

b(k)

$$
\text { k) } \begin{aligned}
& 3 x^{2}+7 x-20 \\
= & 3 x^{2}+12 x-5 x-20 \\
= & \text { I } 12-60 \\
= & 3 x(x+4)-5(x+4) \\
= & (x+4)(3 x-5)
\end{aligned}
$$

