Ex. 1 The diagram below shows a transformed radical function as well as the parent function. Determine the transformations involved and express the entire transformation using function notation.

- $(0,0) \rightarrow(5,-3): p=5$ and $q=-3$
- vertical reflection: $a<0$
- for radical function, choose to look only at k , so $|a|=1$ and $a=-1$
- looks like a horizontal compression, so try to find where the point $(4,2)$ has moved on the new graph
- choose $(4,2)$ because it's a compression, so start with a bigger x-value (4) and see how much smaller it gets
- the y-value (2) will be the same
- a step of 4 in the x becomes a step of 1
- $|k|=4$ (compression by 4)
- $y=-f[4(x-5)]-3$

Ex. 2 The diagram below shows a transformed radical function as well as the parent function. Determine the transformations involved and express the entire transformation using function notation.

- $(0,0) \rightarrow(3,5): p=3$ and $q=5$
- horizontal reflection: $k<0$
- for radical function, choose to look only at k , so $|a|=1$ and $a=-1$
- looks like a horizontal stretch, so try to find where the point $(1,1)$ has moved on the new graph
- choose $(1,1)$ because it's a stretch, so start with a smaller x-value (1) and see how much bigger it gets
- the y-value (1) will be the same
- a step of 1 in the x becomes a step of 4
- $|k|=\frac{1}{4}$ (stretch by 4$)$
- $y=f\left[-\frac{1}{4}(x-3)\right]+5$

Ex. 3 The diagram below shows a transformed reciprocal function as well as the parent function. Determine the transformations involved and express the entire transformation using function notation.

- asymptotes: $x=0 \rightarrow x=2$ and $y=0 \rightarrow y=3$ $p=2$ and $q=3$
- for reciprocal, either reflection is fine
- choose vertical reflection: $a<0$
- for reciprocal, either scaling is fine
- choose vertical scaling, so $k=1$
- consider vertical distance from asymptote to point $(1,1)$, so $d_{1}=1$
- now consider vertical distance from new asymptote $(y=3)$ to new point $(1,-1)$
- remember to measure distance from asymptote, which is $d_{2}=4$
- vertical stretch by $4,|a|=4, a=-4$
- $y=-4 f(x-2)+3$

Ex. 4 The diagram below shows a transformed reciprocal function as well as the parent function. Determine the transformations involved and express the entire transformation using function notation.

- asymptotes: $x=0 \rightarrow x=-3$ and $y=0 \rightarrow y=-2$ $p=-3$ and $q=-2$
- no reflection
- for reciprocal, either scaling is fine
- choose vertical scaling, so $k=1$
- consider vertical distance from asymptote to point $(1,1)$, so $d_{1}=1$
- now consider vertical distance from new asymptote $(y=-2)$ to new point $(-2,0)$
- remember to measure distance from asymptote, which is $d_{2}=2$
- vertical stretch by $2,|a|=2, a=2$
- $y=2 f(x+3)-2$

Ex. 5 The diagram below shows a transformed piecewise function as well as the parent function. Determine the transformations involved and express the entire transformation using function notation.

- no well-defined zero-values to work with
- vertical reflection
- compare full-widths and full-heights
- $w_{1}=6, w_{2}=3$
- compress by $2,|k|=2, k=2$
- $h_{1}=5, h_{2}=10$
- stretch by $2,|a|=2, a=-2$
- use $(x, y) \rightarrow\left(\frac{x}{k}+p, a y+q\right)$ to find p, q

$$
\begin{array}{ll}
\circ & (1,1) \rightarrow(-0.5,-5) \\
\circ & \frac{1}{2}+p=-0.5, p=-1 \\
\circ & -2(1)+q=-5, q=-3
\end{array}
$$

- $y=-2 f[2(x+1)]-3$

Ex. 6 The diagram below shows a transformed piecewise function as well as the parent function. Determine the transformations involved and express the entire transformation using function notation.

- $(-2,0) \rightarrow(7,-1)$ so $q=-1$
- horizontal reflection, $k<0, a>0$
- compare full-widths and full-heights
- $w_{1}=6, w_{2}=12$
- h. stretch by $2,|k|=\frac{1}{2}, k=-\frac{1}{2}$
- $h_{1}=3, h_{2}=1.5$
- compress by $2,|a|=\frac{1}{2}, a=\frac{1}{2}$
- use $(x, y) \rightarrow\left(\frac{x}{k}+p, a y+q\right)$ to find p
- $(1,1) \rightarrow(1,-0.5)$

$$
\begin{aligned}
-2 x+p & =1 \\
\circ-2(1)+p & =1 \\
p & =3
\end{aligned}
$$

- $y=\frac{1}{2} f\left[-\frac{1}{2}(x-3)\right]-1$

Ex. 7 The diagram below shows a transformed piecewise function as well as the parent function. Determine the transformations involved and express the entire transformation using function notation.

- no zero-values to work with
- no reflections, $k>0, a>0$
- one point missing, so compare widths and heights between key points
- top 2 points: $w_{1}=4, w_{2}=4, k=1$
- 2nd \& 3rd points: $h_{1}=1.5, h_{2}=4.5$
- v.stretch by $3,|a|=3, a=3$
- use $(x, y) \rightarrow\left(\frac{x}{k}+p, a y+q\right)$ to find p, q
- $(1,2) \rightarrow(-1,3)$

$$
x+p=-1 \quad 3 y+q=3
$$

- $(1)+p=-1 \quad 3(2)+q=3$
$p=-2 \quad q=-3$
- $y=3 f(x+2)-3$

Ex. 8 The diagram below shows a transformed piecewise function as well as the parent function. Determine the transformations involved and express the entire transformation using function notation.

- $(0,4) \rightarrow(2,3):$ right $2, p=2$
- $(-6,0) \rightarrow(4,5):$ up $5, q=5$
- difficult to see (sorry), but there is actually a vertical and horizontal reflection: $k<0, a<0$
- compare width: $w_{1}=9, w_{2}=3$
- h.compress by $3:|k|=3, k=-3$
- compare height: $h_{1}=7, h_{2}=3.5$
- v.compress by 2: $|a|=2, a=-2$
- $y=-2 f[-3(x-2)]+5$

