\qquad

1. Given angle θ, where $0^{\circ} \leq \theta \leq 360^{\circ}$, determine two possible values of θ where each ratio would be true. Sketch both principal angles.
(a) $\cos \theta=0.6951$
(b) $\tan \theta=-0.7571$
(c) $\sin \theta=0.3154$
(d) $\cos \theta=-0.2882$
(e) $\sin \theta=-0.7503$
(f) $\tan \theta=1.3211$
2. For $\cos \theta=-\frac{5}{12}$, where $0^{\circ} \leq \theta \leq 360^{\circ}$
(a) In which quadrant(s) could the terminal arm of θ be located?
(b) Draw a diagram for each possible terminal arm, and determine x, y, and r for each diagram.
(c) Determine the trigonometric ratios for θ (exact values only) for each terminal arm.
(d) Determine all possible values of θ to the nearest degree.
3. For $\tan \theta=\frac{15}{9}$, where $0^{\circ} \leq \theta \leq 360^{\circ}$
(a) In which quadrant(s) could the terminal arm of θ be located?
(b) Draw a diagram for each possible terminal arm, and determine x, y, and r for each diagram.
(c) Determine the trigonometric ratios for θ (exact values only) for each terminal arm.
(d) Determine all possible values of θ to the nearest degree.
4. For $\sin \theta=-\frac{11}{20}$, where $0^{\circ} \leq \theta \leq 360^{\circ}$
(a) In which quadrant(s) could the terminal arm of θ be located?
(b) Draw a diagram for each possible terminal arm, and determine x, y, and r for each diagram.
(c) Determine the trigonometric ratios for θ (exact values only) for each terminal arm.
(d) Determine all possible values of θ to the nearest degree.

Name: \qquad Trigonometry in the Cartesian Plane - CAST Rule
Nov 20, 2013

1. Given angle θ, where $0^{\circ} \leq \theta \leq 360^{\circ}$, determine two possible values of θ where each ratio would be true. Sketch both principal angles.
(g) $\cos \theta=0.6951$
(h) $\tan \theta=-0.7571$
(i) $\sin \theta=0.3154$
(j) $\cos \theta=-0.2882$
(k) $\sin \theta=-0.7503$
(l) $\tan \theta=1.3211$
2. For $\cos \theta=-\frac{5}{12}$, where $0^{\circ} \leq \theta \leq 360^{\circ}$
(a) In which quadrant(s) could the terminal arm of θ be located?
(b) Draw a diagram for each possible terminal arm, and determine x, y, and r for each diagram.
(c) Determine the trigonometric ratios for θ (exact values only) for each terminal arm.
(d) Determine all possible values of θ to the nearest degree.
3. For $\tan \theta=\frac{15}{9}$, where $0^{\circ} \leq \theta \leq 360^{\circ}$
(a) In which quadrant(s) could the terminal arm of θ be located?
(b) Draw a diagram for each possible terminal arm, and determine x, y, and r for each diagram.
(c) Determine the trigonometric ratios for θ (exact values only) for each terminal arm.
(d) Determine all possible values of θ to the nearest degree.
4. For $\sin \theta=-\frac{11}{20}$, where $0^{\circ} \leq \theta \leq 360^{\circ}$
(a) In which quadrant(s) could the terminal arm of θ be located?
(b) Draw a diagram for each possible terminal arm, and determine x, y, and r for each diagram.
(c) Determine the trigonometric ratios for θ (exact values only) for each terminal arm.
(d) Determine all possible values of θ to the nearest degree.
