

May 1-8:29 AM

Vectors in R² and R³

Apr. 25/2014

The x-y plane, R², spans two dimensions (e.g., length & width).

Any point P(x,y) can be located in terms of a vector from the origin O(0,0) to the point P(x,y). This is the position vector of the point P.

$$\overrightarrow{OP} = \vec{x} + \vec{y} = (x, y)$$

The magnitude, or length, of the vector is given by

$$\left| \overrightarrow{OP} \right| = \sqrt{x^2 + y^2}$$

May 1-1:07 PM

May 1-1:15 PM

In three dimensions, we add the z-axis, forming R³. The three axes (x, y, and z) form a perpendicular, right-handed system.

Any point, P(x,y,z), can be described by the position vector from the origin O(0,0,0) to the point P(x,y,z).

$$\overrightarrow{OP} = (x, y, z)$$

$$\left| \overrightarrow{OP} \right| = \sqrt{x^2 + y^2 + z^2}$$

Apr 25-8:23 AM

Ex2: Draw these vectors within a corresponding rectangular prism (if needed) in **R**³.

$$\vec{u} = (2, 3, 4)$$

$$\overrightarrow{v} = (3, -4, 5)$$

$$\vec{w} = (0, -3, 0)$$

Assigned work:

p. 316 # 1, 4, 5, 6, 7ab, 8, 12a, 15

May 1-1:44 PM