Unit 1 - Functions

Sep2/2014

Review: Functions, Domain, and Range

A <u>relation</u> is any <u>set</u> of ordered pairs (x, y) relating an <u>independent variable</u> (typically x) to a <u>dependent variable</u> (typically y).

For example:

- (a) y = 3x + 2 is the equation for a set of points.
- (b) $\{(0,1), (3, 4), (2, -5)\}$ is a set of ordered pairs.

<u>Domain</u> is the <u>set</u> of all possible values for the independent variable. $D = \{0.3.7\}$

Range is the <u>set</u> of all possible values for the dependent variable.

Feb 12-9:14 PM

A function is a special type of relation where each value of the independent variable yields only a single value of the dependent variable.

For example:

- (1) Set Notation: No x-value is repeated
- (2) Graph: If any vertical line passes through more than one point on the graph of a relation, it is not a function. This is known as the vertical line test.
- (3) Equation: Rearrange for y and ensure there is only a single value produced for any x.

Feb 21-10:02 PM

Feb 22-10:01 PM

The equation of a relation which is a function can be written using a special notation, function notation.

$$f(x) = 3x + 2$$

"the result depends on x and is defined as 3x + 2"

On a graph, the y-axis is used to represent the value of the function, which we write as

$$y = f(x)$$

"the variable y is a function of the variable x"

4 cd

(c) $x^2 = 2y + 1$ $x^2 - 1 = 2y$ $y = \frac{1}{2}x^2 - \frac{1}{2}$ $\Rightarrow 0$ $\Rightarrow 0$

Sep 3-12:47 PM

Untitled 2.mml