1. Find the points of intersection (if any) for $y=-x+6$ and $y=-2 x^{2}+3 x-2$.
2. Determine the points of intersection between the quadratic-linear system below. Draw a sketch to make sense of your answer. $y=-(x+1)(x-7) \quad y=3.5(x+2)$
3. The equations below have the solution $(1,11)$. Determine the values of h and m . Draw a sketch to make sense of your answer. $y_{1}=3(x-h)^{2}+8 \quad y_{2}=m x+17$
4. Determine the equations of the lines that have a slope of -6 and intersect the quadratic relation once, twice or never. $y=3 x^{2}+6 x-7$
5. A quadratic relation and a linear relation share the same y-intercept at -3 . You also know that two other points on the parabola are $(2,1)$ and $(4,-11)$, while another point on the line is $(4,9)$.
Determine the equations of each in the form $y=a x^{2}+b x+c$ and $y=m x+k$.
6. Determine the point(s) of intersection between the quadratic-quadratic system below. Draw a sketch to make sense of your answer.
$y=x^{2}-4 x-5$
$y=3 x^{2}-6 x+7$

Answers: 1. no solution; 2. (0,7) and (2.5,15.75); 3. $h=0$ or $h=2, m=-6 ; 4 . y=-6 \mathrm{x}-19$ has one solution, y-int >-19 for two solutions, y -int <-19 for no solution; 5. $3 x-3$ and $-2 \mathrm{x}^{2}+6 x-3$; 6 . no solution

1. Find the points of intersection (if any) for $y=-x+6$ and $y=-2 x^{2}+3 x-2$.
2. Determine the points of intersection between the quadratic-linear system below. Draw a sketch to make sense of your answer. $y=-(x+1)(x-7) \quad y=3.5(x+2)$
3. The equations below have the solution $(1,11)$. Determine the values of h and m . Draw a sketch to make sense of your answer. $y_{1}=3(x-h)^{2}+8 \quad y_{2}=m x+17$
4. Determine the equations of the lines that have a slope of -6 and intersect the quadratic relation once, twice or never. $\quad y=3 x^{2}+6 x-7$
5. A quadratic relation and a linear relation share the same y-intercept at -3 . You also know that two other points on the parabola are $(2,1)$ and $(4,-11)$, while another point on the line is $(4,9)$.
Determine the equations of each in the form $y=a x^{2}+b x+c$ and $y=m x+k$.
6. Determine the point(s) of intersection between the quadratic-quadratic system below. Draw a sketch to make sense of your answer. $y=x^{2}-4 x-5 \quad y=3 x^{2}-6 x+7$

Answers: 1. no solution; 2. (0,7) and (2.5,15.75); 3. $h=0$ or $h=2, m=-6 ; 4 . y=-6 \mathrm{x}-19$ has one solution, y -int >-19 for two solutions, y -int <-19 for no solution; 5. $3 x-3$ and $-2 \mathrm{x}^{2}+6 x-3 ; 6$. no solution

