
## **Solving Linear Inequalities**

To solve an inequality, find all values that satisfy the inequality.

Consider: 3x - 1 < 8

The simplest way to visualize the solution is to graph and compare the LS and RS:



Where is the line y = 3x - 1 less than the line y = 8?

p.213 # 5bdf, 6be, 7bdf, 8, 9, 11, 15, 19

Sep 30-10:29 PM

We have also solved such inequalities by:

32-1<8

- (1) solving the corresponding equation, then
- (2) testing values around the solution(s).

(1) Solve 
$$3x - 1 = 8$$

$$3x = 8 + 1$$

$$3x = 9$$

$$x = 3$$

(2) Test x < 3 and x > 3

$$LS = 3(4) - 1$$
= 12 - 1
= 11
> 8

· x < 3

.. fails

$$3x - 1 < 8$$

(1) Solve 
$$3x - 1 = 8$$

$$3x = 9$$

$$x = 3$$

(2) Test x < 3: 3(2) - 1 = 5, pass

Test 
$$x>3$$
:  $3(4)-1=11$  , fail

The solution can be represented as:

- $\{x \in \mathbb{R} | x < 3\}$ (a) set notation:
- $x \in (-\infty, 3)$ (b) interval notation:
- (c) a number line:



Sep 30-10:37 PM

## Algebraic Operations on Inequalities

What are the effects of adding, subtracting, multiplying, and dividing on a very simple inequality?

Start with 4 < 8, which is obviously true.

add positive:

add negative:

subtract positive:

subtract negative:

multply by positive: 
$$4x2 < 8x2$$

multiply by negative:

divide by positive:
$$\frac{4x(-2) < 8}{2} < 4^{2}$$

divide by negative:

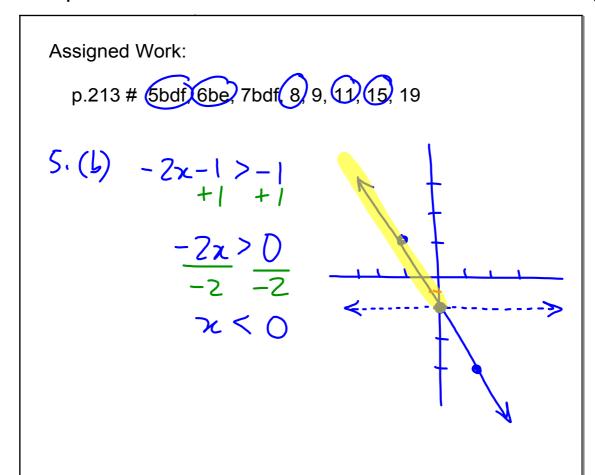
Solving Inequalities Algebraically:

We can use the same basic operations (add, subtract, multiply, divide) that we would with a regular equation.

Note: When multiplying or dividing by a negative value, the direction of the inequality must be switched.

eg 
$$3x - 5 > 10$$
  
 $3x > 10 + 5$   
 $3x > 15$   
 $x > 5$   
eg  $-3x - 5 > 10$   
 $-3x > 10 + 5$   
 $-3x > 15$   
 $x < -5$ 

Sep 30-10:55 PM


Ex.1 Solve 
$$10 \le 3(2x-5) - (3x-7) < 25$$
.

Express your solution using:

- (a) set notation,
- (b) interval notation,
- (c) a number line.

- use opperations on all parts together - simplify before starting

$$10 \le 6x - 15 - 3x + 7 < 25$$
 $10 \le 3x = 1 < 25$ 
 $10 + 18 \le 3x < 25 + 18$ 
 $18 \le 3x < 23$ 
 $10 \le 3x < 11$ 

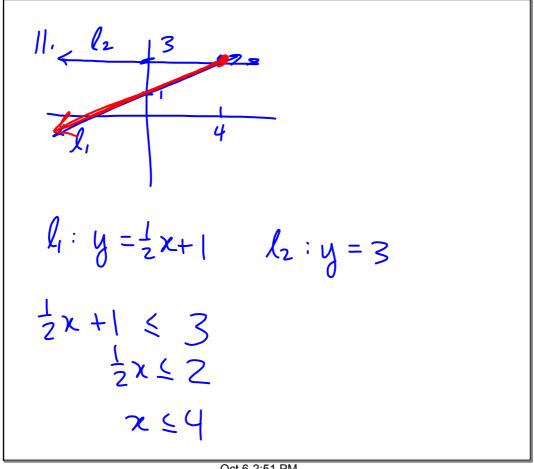


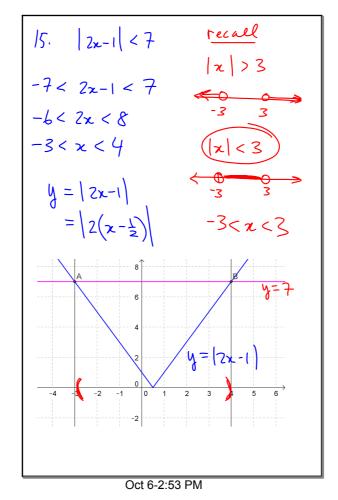
Oct 1-10:21 AM

6.(b) 
$$-bx < x+4 < 12$$

does 0 make inequality true?

test  $x=0$ 
 $-6(0) < 0+4 < 12$ ?


 $0 < 4 < 12$ ?


true true

 $0 < 4 < 12$ ?

8. (a) 
$$x > 4$$
 [x3]  
 $3x > 12$  [-5]  
 $3x - 5 > 7$  [+x]  
 $4x - 5 > x + 7$ 

Oct 6-2:48 PM



