Graphs of Reciprocal Functions

The function g(x) has a reciprocal function $f(x) = \frac{1}{g(x)}$

We shall limit g(x) to polynomial functions for this unit.

(1) Do the "INVESTIGATE the Math" on p.248, parts F to H

- graph paper will be provided
- use graphing technology to verify results

Oct 13-6:19 PM

$$lg. \frac{\chi}{\chi}$$

$$= \frac{1}{1}$$

$$= 1, \chi \neq 0$$

Oct 13-10:12 PM

characteristics	original	reciprocal
zeroes & asymptotes	$\begin{array}{c} x = -2 \\ z = 2 \end{array}$	VA: x=-2
positive intervals	(- \phi,-2),(2,\phi)	(-\phi,-2),(2,\phi)
negative intervals	(-2,2)	(-2,2)
increasing intervals	(0,8)	(- 10,-2)U(-2,0)
decreasing intervals	(-6,0)	(0,2) U (2,10)
points where y = 1		
points where y = -1		

Summary:

- (a) if a point on a function has coordinates $\left(x,\frac{a}{b}\right)$ the reciprocal function has a point $\left(x,\frac{b}{a}\right)$
- (b) if the original function has any zeroes, the reciprocal will have corresponding vertical asymptotes
- (c) if the original function is linear or quadratic, its reciprocal will have a horizontal asymptote at y = 0
- (d) the original and reciprocal will be positive and negative on the same intervals
- (e) intervals of increase/decrease are reversed on reciprocal
- (f) any local max/min points become local min/max points (they are reversed)
- (g) any point on the original function with a y-value of 1 or -1 will intersect the reciprocal at that point

Oct 13-9:43 PM

Assigned Work:

p.254 # 1, 2def, 6bcd, 8bdf, 9bc 11 16 (find equation of reciprocal (shown) and original function)

2(d)
$$f(x) = 4x^2 - 25$$
 $g(x) = \frac{1}{4x^2 - 25}$
= $(2x-5)(2x+5)$

Zeroes:
$$\chi = \frac{5}{2}, -\frac{5}{2} \rightarrow VA: \chi = \frac{5}{2}$$

$$\chi = -\frac{5}{2}$$

