Rates of Change in Rational Functions

Average Rate of Change
$$\Rightarrow m_{\text{secant}} = \frac{f(x_2) - f(x_1)}{x_2 - x_2}$$

Oct 22/2014

Estimate of Instantaneous Rate of Change $\Rightarrow m_{\text{secant}} = \frac{f(a+h) - f(a)}{h}$

Notes:

- (1) You cannot find the instantaneous rate of change at a discontinuity (hole or VA). It has no meaning.
- (2) While it is possible to determine the average rate of change across a discontinuity, you need to consider whether or not it makes sense to do so.

Oct 17-8:44 AM

Ex.1 Estimate the slope of the tangent to the graph of

$$f(x) = \frac{2x}{x-3} \text{ at the point where } x = 4.$$

$$f(4) = \frac{2(4)}{4-3}$$

$$= 8$$

$$h = 0.1 : \text{ avg } RoC = \frac{f(4.1) - f(4)}{0.1}$$

$$= \frac{2(4.1)}{4.1-3} - 8$$

$$= -5.45$$

$$h = 0.01 : \text{ avg } RoC = \frac{f(4.01) - f(4)}{0.01}$$

$$= -5.941$$

$$h = 0.001 : \text{ avg } RoC = -5.994$$

Oct 17-9:30 AM

=-6.0

(4, 8)

5

-5

Oct 17-9:30 AM

10. (a) over first:
$$t=0$$
 to $t=6$

and RoC = $\frac{N(6) - N(0)}{6 - 0}$

(b) at and a year: $t=12$
 $h=0.01$: $iRoC = \frac{N(12.01) - N(12)}{0.01}$

= $\frac{12.01 \text{ is not in domain}}{0.01}$
 $iRoC = \frac{N(11.99) - N(12)}{-0.01}$

= $\frac{N(12) - N(11.99)}{0.01}$

= $\frac{N(12) - N(11.99)}{0.01}$