Rates of Change in Rational Functions

Oct 22/2014

Average Rate of Change
$$\Rightarrow m_{\text{secant}} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Estimate of Instantaneous Rate of Change
$$\Rightarrow m_{\text{secant}} = \frac{f(a+h) - f(a)}{h}$$
Notes:
$$\Rightarrow m_{\text{secant}} = \frac{f(a+h) - f(a)}{h}$$

- (1) You cannot find the instantaneous rate of change at a discontinuity (hole or VA). It has no meaning.
- (2) While it is possible to determine the average rate of change across a discontinuity, you need to consider whether or not it makes sense to do so.

Oct 17-8:44 AM

Ex.1 Estimate the slope of the tangent to the graph of

$$f(x) = \frac{2x}{x-3}$$
 at the point where x = 4.

$$f(4) = \frac{2(4)}{4-3}$$
= 8

$$m_{sec} = \frac{f(4.01) - f(4)}{0.01}$$
=
$$\frac{2(4.01)}{0.01} - 8$$

$$= \frac{2(4.01)}{0.01}$$

$$= -5.9406$$

$$h = 0.001$$
 $M_{Sec} = -5.994$

Ex.1 Estimate the slope of the tangent to the graph of $f(x) = \frac{2x}{x-3}$ at the point where x = 4.

$$M_{tam} = \frac{8 - 20}{4 - 2}$$

$$= \frac{-/2}{2}$$

$$= -6$$

Oct 17-9:30 AM

Assigned Work: p.303 # 1, 2, 4, 600 10 13 x + 5 = 0 6(b) $f(z) = \frac{x-6}{x+5}$ x = -7 h = 0.01 $M = \frac{f(-6.99) - f(7)}{0.01}$ f(-7.01) - f(-7) = 2.76 h = 0.001 =) M = 2.75No fargant line: VAs or holes VA: x = -5

$$6(c) \frac{2x^{2}-6x}{3x+5}$$

$$= \frac{2x(x-3)}{3x+5} \Rightarrow VA: 3x+5=0$$

$$3x=-5$$

$$x=\frac{-5}{3}$$
ho fagent

Oct 23-10:37 AM

10.
$$N(t) = \frac{100t^3}{100+t^3}$$
 $0 \le t \le 12$

(a) from 0 to 6

any RoC = $\frac{N(6) - N(0)}{6 - 0}$

=

(b) iRoC for $t = 12$ (months) = 1 year

 $h = 0.01$ (less than 1 day)

any RoC = $\frac{N(12.01) - N(12)}{0.01}$
 $\cong iRoC$

consider domain $0 \le t \le 12$ $h = -0.01$

any RoC = $\frac{N(11.99) - N(12)}{-0.01}$

= $\frac{N(12) - N(11.99)}{0.01}$

= $\frac{N(12) - N(11.99)}{0.01}$

