Solving Problems with Logarithmic Functions

Dec 8/2014

pH Scale (hydrogen ion concentration):

$$pH = -\log_{10}H^+$$

where pH is the scaled measurement (0 to 14) and H+ is the concentration of hydrogen ions (mol/L) (see p.494 for pH scale examples)

Ex. Calculate the pH for a hydrogen ion concentration of 0.00025 mol/L. Is it an acid or base?

$$pH = -loy(0.00025)$$

 $pH = 3.6$, acid

Dec 7-5:58 PM

Richter Scale (earthquakes):

$$M = \log_{10} A$$

where M is the magnitude (approximately 0 to 10) and A is the amplitude on the seismograph

Note: This formula is useful only for comparing the relative intensity of earthquakes. The actual energy of the earthquake is more complex.

Ex. How does an earthquake of magnitude 8 compare to an earthquake of magnitude 4.5?

$$8 = \log_{10} A_{8}$$

$$A_{8} = 10^{8}$$

$$A_{4.5} = \log_{10} A_{4.5}$$

$$A_{4.5} = 10^{4.5}$$

$$A_{4.5} = \frac{10^{8}}{10^{4.5}}$$

$$A_{4.5} = \log_{10} A_{4.5}$$

$$A_{$$

Dec 7-5:51 PM

Sound Loudness (decibel scale):

$$L = 10\log_{10}\left(\frac{I}{I_0}\right)$$

where L is the loudness of the sound, I is the sound intensity (energy), and I_0 is the threshold of human hearing

note: The threshold, I_0 , is not always necessary for a useful calculation.

Ex. How does the sound intensity of a rock concert compare to that of a subway (see p.498 for loudness values)?

$$L_{RC} = |20 \qquad L_{S} = 90$$

$$|20 = |0 \log \left(\frac{I_{RC}}{I_{0}} \right) \qquad 90 = |0 \log \left(\frac{I_{S}}{I_{0}} \right)$$

$$|0|^{2} = \log_{0} \left(\frac{I_{RC}}{I_{0}} \right) \qquad 9 = \log_{0} \left(\frac{I_{S}}{I_{0}} \right)$$

$$|0|^{2} = \frac{I_{RC}}{I_{0}} \qquad |0|^{9} = \frac{I_{S}}{I_{0}}$$

$$I_{RC} = |0|^{2}I_{0} \qquad I_{S} = |0|^{9}I_{0}$$

$$\frac{I_{RC}}{I_{S}} = \frac{|0|^{2}V_{0}}{|0|^{2}V_{0}}$$

$$= |0|^{3}$$

$$= |0|^{3}$$

Dec 7-6:04 PM

Assigned Work:

p.499 # 1, 2(3)6a) 6a, 11, (13)(15)

b

3.
$$L = lo log(I)$$

Set $I = Io$
 $L = lo log(I)$
 $L = lo log(I)$

$$S(a)$$
 pH = 9 pH = $-log_{1}H^{+}$
 $9 = -log_{1}H^{+}$
 $-9 = log_{1}H^{+}$
 $log_{1}H^{+}$
 $log_{2}H^{+}$
 $log_{3}H^{+}$
 $log_{5}H^{+}$
 $log_{5}H^{+}$

Dec 9-10:35 AM

13.
$$2.1\%$$
 bot $\Rightarrow 97.9\%$ remains

$$C(n) = 1 (0.979)^{n}$$

$$s # 50$$

$$concentration cycles

set $C(n) = 0.50$

$$0.50 = (0.979)^{n}$$

$$log 0.50 = n log 0.979$$

$$n = \frac{log 0.50}{log 0.979}$$

$$n = 32.66$$

$$that es 33 cycles$$$$

Dec 9-10:50 AM

15.
$$A(t) = 80(10^{-0.023t})$$

 $0.25(80) = 80(10^{-0.023t})$
 75% healed
 $\Rightarrow 25\%$ still remains