Products of Functions

Functions
$$(f \times g)(x) = f(x) \times g(x)$$
"If times g of x"
$$f(x) \times g(x) = f(x) \times g(x)$$

To graph, pick an x-value and multiply the y-values from each of the original functions.

The domain of the combined function is the intersection of the domains of the original functions.

$$D_{f \times g} = D_f \cap D_g$$

When combining the functions algebraically, it is possible to have a situation where common factors will divide out of the numerator and denominator. Remember this will form a hole in a graph and a restriction in the domain.

Jan 7-8:29 AM

Application - Damped Harmonic Motion

Periodic Function: $f(x) = \sin(2\pi x)$

Exponential Decay: $g(x) = 2^{-x}$

Damped Harmonic Function:

$$(f \times g)(x) = 2^{-x} \sin(2\pi x)$$

Jan 7-8:30 AM

Ex.1 Given
$$f = \{(1,3), (2,-5), (3,7)\}$$

 $g = \{(2,-2), (3,3), (4,1)\}$

determine $f \times g$.

$$D_{\xi} = \{1, 2, 3\}$$
 $D_{g} = \{2, 3, 4\}$

$$D_{f \times g} = \{?, 3\}$$

$$f \times g = \{(2, 10), (3, 21)\}$$

Jan 6-2:10 PM

Jan 6-9:35 AM

8(d)
$$f(x) = log(x^{2}+6x+9)$$

 $= log(x+3)^{2}$
 $D_{f} = \{x \in \mathbb{R} | x \neq -3\}$
 $g(x) = \sqrt{x^{2}-1}$ $x^{2}-1 \geqslant 0$
 $x^{2} \geqslant 1$
 $x \geqslant 1, x \leq -1$
 $x \geqslant 1, x \geq -1$

Jan 8-2:00 PM

11.
$$c(t) = 0.9^{t}$$
 $l(t) = 650 + 350t$
 $f(t) = c(t) l(t)$
 $= 0.9^{t} (650 + 350t)$
 $f(t) = a max?$
 $f(0) = 650$
 $f(9) = 1273$
 $f(5) = 1269$
 $f(100) = 0.8$
 $f(8) = 1312$
 $f(20) = 808$
 $f(7) = 1315$
 $f(6) = 1302$

.: max accurs around 7 seconds.

Jan 8-2:09 PM

12. "If
$$f(x) \times g(x)$$
 is odd,
then $f(x)$ is odd and $g(x)$ is odd."

let $h(x) = f(x) g(x)$

assume $h(x)$ is odd

$$h(x) = -h(-x)$$

$$h(-x) = -h(x)$$

$$h(x) = -f(-x) g(-x)$$

$$= -f(-x) g(-x)$$

$$f(x)$$
 if odd
$$= f(x) g(-x)$$

$$g(x)$$
 if even

$$f(x)$$
 is odd then
$$f(x)$$
 is odd then
$$f(x)$$
 is odd then
$$f(x)$$
 is odd then
$$f(x)$$
 is odd and $f(x)$ is odd.

Jan 8-2:20 PM