

Making Decisions in Turing

For our programs to become more useful, we
need to start making decisions.

Suppose we want to decide, “Is the user old
enough to vote?”

Conditions

Conditions are statements that can be tested as
either TRUE or FALSE.

input age
if (age is 18 or over) then “You can vote!”
if (age is under 18) then “You cannot vote.”

This is an example of pseudocode, where we use
plain language, but it looks a bit like computer
code.

Example – Voting Age
1. design using comments

As programs get more complicated, start by using
comments to build a framework to solve the
problem:

% ask the user's age

% if they are 18 or older, they can vote

% if they are under 18, they cannot vote

Example – Voting Age
2. Add easy code

var age : int % declare a variable for age

% ask the user's age
put “How old are you? “..
get age

% if they are 18 or older, they can vote
put “You can vote!”
% if they are under 18, they cannot vote
put “You are not old enough to vote.”

Example – Voting Age
3. Add new code

var age : int % declare a variable for age

% ask the user's age
put "How old are you? " ..
get age

% if they are 18 or older, they can vote
if (age >= 18) then

put "You can vote!"
end if

% if they are under 18, they cannot vote
if (age < 18) then

put "You are not old enough to vote."
end if

Example – Voting Age
3b. Add new code – another option

var age : int % declare a variable for age

% ask the user's age
put "How old are you? " ..
get age

% if they are 18 or older, they can vote
if (age >= 18) then

put “You can vote!”
else % if they are under 18, they cannot vote

put “You are not old enough to vote.”
end if

Comparison Operators

Making a decision using selection requires a
comparison between two quantities or values.
Each comparison will use one of the comparison
operators listed below.

< less than <=
less than or equal

to

> greater than >=
greater than or

equal to

= equal to not= not equal to

Flowcharts

So far, we have discussed sequential
programming, where the instructions are executed
one after the other.

In order to design and write programs
sequentially, we need to ensure that our
sequence, or flow, is correct.

It is often useful to represent our program designs
using a diagram, or flowchart.

If-Then (one choice)

if (comparison) then
statements if comparison is true

end if

Code Leading
Up to Decision

Code Following
Any Decision

Comparison
Code to Run IF
Comparison is

TRUE

Nothing Happens IF Comparison FALSE

If-Then-Else (two choices)

if (comparison) then
statements if comparison is true

else
statements if comparison is false

end if

Code Leading
Up to Decision

Code Following
Any Decision

Comparison
Code to Run IF
Comparison is

TRUE

Code to Run IF
Comparison is

FALSE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

