

Working With Arrays

Recall: The Array

The array is a special data structure that allows us
to make large collections of data that:

(a) are of the same data type
(i.e., int, real, string, etc...)

(b) will be used for the same purpose
(e.g., grades, names, ages, addresses, etc...)

Recall: The Array

The common way to draw or visualize the array is
using a group of connected boxes. Each box in
the array has a position (1st, 2nd, 3rd, etc...).

Each box is called an element of the array, and
the position of each element is the index.

1 2 3 4 5

an array with 5 elements

Arrays in Java

An alternative way to declare arrays in one step:

dataType[] name = new dataType[size];

name – the name of the array
dataType – int, char, double, String, etc...

new – tells Java to create space in memory

size – the number of items, or elements, in array

Some Sample Array Declarations

// array of 10 student grades (integers)
int[] grades;
grades = new int[10];

// average temperatures for each month
double[] avgTemp;
avgTemp = new double[12];

// e-mail list for 100 members
String[] mailList = new String[100];

Length of an Array

After creating an array, the most important piece
of information is the length of the array.

We need to know how many elements are in the
array, and we must also avoid going past the
boundaries of the array.

double[] grades = new double[10];

println(grades.length); // outputs 10

Explicit Definition of an Array

It is possible to declare and define (initialize) an
array at the same time, provided you already
know all of the elements in advance.

int[] primes = {1, 2, 3, 5, 7};

Traversing Arrays

In many cases, we want to look at every element
in the array (for input or output), from beginning to
end (or reversed). This is called traversing the
array, and is normally done with a FOR loop.

int[] primes = { 1, 2, 3, 5, 7};
for (int i = 0; i < primes.length; i++)
{
 System.out.println(primes[i]);
}

Array Errors - Out of Bounds
The most common error when dealing with arrays
is to go "out of bounds". This is usually past the
end of the array, but could be before the start as
well.

This is one very good reason why we refer to the
length of the array, rather than using a constant.

for (int i = 0; i < array.length; i++)

instead of

for (int i = 0; i < 10; i++)

Array Errors - Out of Bounds

A well written loop can help avoid most of these
errors. If the code is more complicated, you might
want to protect the array with it's own IF
statement:

if (2*i-3>=0 && 2*i-3 < array.length)
{
 System.out.println(array[2*i - 3]);
}

Comparing Arrays
Arrays are complex data structures (as opposed
to primitive data such as integer or char). As a
result, they cannot be compared using a simple
equality (==) statement.

int[] a = {1, 2, 3, 4, 5};
int[] b = {1, 2, 3, 4, 5};
System.out.println(a == b); // FALSE

While the content of each array is the same, the
arrays themselves are not equal.

Comparing Arrays

To compare arrays, each element must be
compared individually and all much match. Thus
the arrays must also be the same length. Use a
counted (for) loop to traverse & compare each.

boolean same = true;
for (i = 0; i<a.length && i<b.length; i++)
{

same = same && (a[i] == b[i]);
}

Comparing Arrays

boolean same = true;
for (i = 0; i<a.length && i<b.length; i++)
{

same = same && a[i] == b[i];
}

This code is also an example of accumulating a
boolean value. As soon as the comparison fails
once (i.e., false), the variable 'same' will change to
false and stay that way.

Accumulating boolean values can be a very useful
and powerful technique for some problems.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

